IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-35, NO. 2, FEBRUARY 1987 117

Finite-Element Analysis of Waveguide
Modes: A Novel Approach That
Eliminates Spurious Modes

TUPTIM ANGKAEW, MASANORI MATSUHARA, AND NOBUAKI KUMAGALI, FELLOW, IEEE

Abstract — An efficient finite-element method for analyzing the propa-
gation characteristics of a wide variety of waveguides is presented. A
variational expression suited for the finite-element method is formulated in
terms of the transverse electric and magnetic field components. In this
approach, all guided-mode solutions are real, while the spurious-mode
solutions are not real. Therefore, discrimination of the spurious-mode
solutions can be achieved merely by imposing the simple condition that
guided-mode solutions be real. Three numerical examples, two for the
isotropic case and the other for the magnetic anisotropic case, are carried
out,

I. INTRODUCTION

ECENTLY, a method employing finite-element anal-

ysis to investigate the propagation characteristics of
any arbitrarily shaped waveguide has attracted the atten-
tion of many researchers. The finite-element method is a
powerful means which enables one to analyze a wide
variety of waveguide problems. Several variational formu-
lations for use with the finite-element method have been
proposed [1]-[7]. Most of the variational expressions previ-
ously used are a functional of frequency and can be
classified into the following three types {1]-[6]:

1) variational expressions which are formulated in terms
of the longitudinal components of the electric field
(e,) and the magnetic field (k,) and can be written
as w = functional (B, e,, ) [1], [2]);

2) variational expressions employing the longitudinal
component (e,) and the transverse component (e,) of
the electric field, which can be written as w=
functional (S, e,, e,) [3]; and

3) variational expressions employing all three compo-
nents of the magnetic field, namely k#, and h,, which
can be written as w = functional (8, &, h,) [4]-[6].

Here, o is the angular frequency and S is the propagation
constant.

The most serious drawback associated with the finite-
element method is the appearance of spurious-mode solu-
tions. Up to this time, much effort has been devoted to
finding a criterion to eliminate the spurious-mode solu-
tions. A second drawback occurs in the application of
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variational expressions which are a functional of frequency.
Let us consider, for example, the most common require-
ment in a waveguide problem, namely which mode can
exist for a given value of frequency w and what is the value
for the propagation constant 8? In order to fulfill this
requirement, the calculation of the w—f diagram must be
performed. Further, if the permeability or permittivity of
the medium is a function of frequency, the calculation
becomes almost impossible.

The approaches proposed by Hano [3] and Koshiba
et al. [6] are typical methods whereby the mixing of
guided-mode solutions with the spurious-mode solutions is
prevented. Hano has used a unique method that employs
the variational expression of type 2, where the longitudinal
and the transverse components of electric field are ex-
pressed as quadratic and linear functions of transverse
coordinates, respectively. As a consequence of this ap-
proach, the values for w of the spurious-mode solutions do
not lie in the region of lower order guided modes. How-
ever, an overlap between the existence region of the values
for w? of the spurious-mode solutions and guided-mode
solutions still occurs. Koshiba er al. have modified the
variational expression of type 3 given in [4]." Besides the
continuity condition for i,-(nXh,) and i,-h, at the
boundary between element and element, a supplementary
boundary condition, which requires the continuity of n-h,,
has been introduced. Consequently, the values for w of the
spurious-mode solutions do not lie in the existence region
of slow guided modes. However, an overlap between the
existence region of w? of the spurious-mode solutions and
guided-mode solutions cannot be avoided. The supplemen-
tary boundary condition also has a constraint which re-
stricts the scope of applications to cases where the perme-
ability of the medium is uniform.

In this paper, a finite-element formulation intended to
overcome the two drawbacks previously mentioned is pro-
posed. A novel variational expression is established in
terms of the transverse electric and magnetic field compo-
nents. In our finite-element program, we assign the param-
eters according to the necessary boundary conditions i,-(n
X e,) and i, (n X h,) required in the variational expres-

LRecently, Hayata ez al. [7] have demonstrated a method more ad-
vanced than that outlined in [4].
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sion. In our approach, the spurious-mode solutions are not
real while the guided-mode solutions are real. Thus, the
discrimination between spurious-mode solutions and
guided-mode solutions can be achieved merely by im-
posing the simple condition that the latter be real. In
addition to the advantage that the spurious-mode solutions
can be eliminated, our method can also be applied to the
case where the permeability or permittivity of the medium
is a function of frequency. Therefore, our finite-element
formulation is very useful for the analysis of arbitrarily
shaped waveguides.

The application of our finite-element method to iso-
tropic and anisotropic waveguides is discussed. In particu-
lar, the case where the permeability of the medium is a
function of frequency is considered.

II. VARIATIONAL FORMULATION IN TERMS OF THE
TRANSVERSE ELECTROMAGNETIC FIELD COMPONENTS

Consider the anisotropic waveguide with an arbitrary
cross section in the x -y plane. The waveguide is assumed
to be uniform along its longitudinal z-axis. Then the cross
section of the waveguide is subdivided into a finite number
of elements according to the finite-element method. The
permittivity and permeability tensors of the anisotropic
medium are assumed to be Hermite tensors and are de-
fined in matrix form as

Yy ]
’J'ZZ

€= €t €y _ [’J‘tt

e:.'t €zz Il' “zt

where the subscripts #, ¢z, zt, and zz refer to 2X2, 2X1,
1X2, and 1 X1 submatrices, respectively. From Maxwell’s

equations, the equations that govern the electromagnetic
fields in each element are

we, e, +we, e, + jVXh,+Bi,Xh,=0

1)
where e, and h, are the transverse components of the
electric and magnetic fields, respectively. The longitudinal
components, e, and h,, can be expressed in terms of the
transverse electromagnetic field components as

bt op b, — jV Xe, —Bi,Xe,=0

e, = jwe (V X ht - jwizt'et)

2z

h,=—

z

jwu (V Xet+jwp‘zt'ht)' (2)

At the boundary of each element, the boundary condi-
tions for the electromagnetic fields in (1) require the
following,

For the boundary between element and element

i,-(n X e,) = continuous function
i, e, = continuoaus function
i,-(n X h,) = continuous function (32)
i, h, = continuous function.
For the boundary between element and electric wall
i (nxe)=0, (3b)

i,e,=0.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MIT-35, NO. 2, FEBRUARY 1987

For the boundary between element and magnetic wall

(3¢)

Here, n is a normal unit vector to the boundary of each
element.

Next, the guided-mode solutions that satisfy (1) and the
boundary conditions in (3) make the following functional
of propagation constant stationary. In other words, we can
prove that this functional is a variational expression

Ble.h)=Y Ale,h)|Y.B(e,h,)

i (nxXh)=0, i-h,=0.

(4)

where

A(ez:ht) =f[et*'wftt'et""h;k""l-"tt'ht

(V Xe,+ jwnu‘zt'ht)*

W,

(V Xe,+ j‘*’.”'zt'ht)

(V X ht_ jw(zt'et)*

zz

(V Xh,— jwe,,-e,) | ds

Ble, k) = [[i,-(ef X h,+e,xh})] ds.

Here, Y. denotes a summation taken over all elements and
[ds denotes a surface integral taken in each element.

The trial functions of the transverse electric and mag-
netic field components used in (4) must necessarily satisfy
the following boundary conditions at the boundary of each
element.

For the boundary between element and element

(52)

i,-(n X e,) = continuous function
i,-(n X h,) = continuous function.

For the boundary between element and electric wall

(5b)

For the boundary between element and magnetic wall

(5¢)

In the following, we shall prove the validity of the
variational expression in (4). First, we assume that the trial
functions of the transverse electric and magnetic field
components used in (4) differ from the true guided-mode
solutions satisfying (1) and (3) by small admissible changes
de, and 8h,, respectively. Let 88 denote a variation of the
propagation constant corresponding to Se . and 8k, Under
the condition that 8 and 88 be real, substituting the trial
functions written in variation notations into (4) results in
the following equations:

382 B=).(A-BB)+ ¥ (84— BSB)

i (nxe,)=0.

i (nxh,)=0.

(6)
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where
A-BB= f[e,*-(we,,-e, +we,ce,+ jV X h,+Bi,Xh,)
+h*(op, h,+ Wi, h,
—jv Xe,—Bi,xe,)] ds

+ P, (noxe)* e, (moxh,)*]dl (7a)
and
84— Bé6B

=f[8e,*-(we,,-e,+we,,-ez+jv Xh,+Bi,Xh,)
+8h}-(wpy b+ op, b, — jV Xe,—Bi, Xe,)
+8e,-(we,-e,+we e, + jV X h,+Bi, X h,)*
+8h,-(wp, b+ op,h,~ jV Xe,—Pi,xXe,)*] ds
+j¢[h,-(n0><8e,)*—ez-(n0X8h,)*

~h}-(nyx38e)+ex(nyx8h,)]dl. (7b)
Here $dl denotes.a line integral taken along the entire
boundary line in each element and n, denotes an outward
normal unit vector at the boundary of each element. The
e, h,, e, h, and B in (7) satisfy (1), (2), and (3). Thus, by
substituting (1), (2), and (3) into (7) we get

L(4-BB)=0

X.(84-8B) = Ljp[h.-(mo x 8e,)" ~e,-(mo X 84,)"
—h¥-(noxde,)+e*(nyx8h,)] dl. (8)

Since de, and 8h, also satisfy the boundary conditions in
(5) according to the trial functions e, and h,, the term
(84 — BSB) in the above equation becomes zero. Hence,
(6) can be written as
88 =0. )
From (9), we can prove that the functional in (4) is the
variational expression accounting for (1) and (3). This
variational expression has the advantage that for a given
value of angular frequency, the values of the propagation
constant can be obtained directly. The variational expres-
sion is also suited for a finite-element formulation in the
sense that all guided-mode solutions are real while the
spurious-mode solutions are not real. This is confirmed in
the numerical examples described in Section IV.

III.

According to the standard finite-element method, the
cross section of the waveguide is subdivided into a finite
number of triangular elements. Fig. 1 shows an arbitrary
triangular element. The node number and the correspond-
ing node coordinate at each vertex are assigned as 1,
(xla yl), 27 (x2’ y?.)a and 3, (X3, y3)’ I'CSpOCtiVCly. The nor-
mal unit vector at each side is assigned as n;,, n,;, and n,,
normal to, respectively, the sides (1-2), (2-3), and (3-1).
The trial functions of the transverse electric and magnetic
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1 2
Fig. 1. An arbitrary triangular element.

field components in each element are expressed by using
12 unknown parameters as

N,(x,¥)¢,
1

N@
Il
3
5 1M

>
It

(10)

Nm*6(x9 y)¢m
7

m

where ¢, (for m=1~12) denotes unknown parameters
and N,,(x, y) (for m =1~ 6) represents linear vector shape
functions. The vector shape functions are determined by
the scalar shape functions and the normal unit vectors in
the element. These vector shape functions can be expressed
as

nij
Ny, =—— N,
2i—1 .( % i
I\n,;Xn,;

n;;
Nyy=——5 N,
'z'("ijx"ki)
XV — Xy )+ ly, — x-i-x—x.
Ni=(,yk )+ (0= y)x+(x = x,)y a1)

X1V F XaY3t X3P = X Y1 — X3V, — X1 3

.where (i, j, k) permutes in a natural order. The equations

for the unknown parameters ¢,, (for m=1~12) can be

recognized from (10) and (11) as follows

by_1=1i,(ny; X e,)

¢2i=iz'(”zj Xe,)
b2res =i, (ny; X hy;)
¢2i+6=iz'("ij><hri) (12)

where e,; and h, (for i=1~3) denote the transverse
electric and magnetic field components at node i. Equa-
tions (12) mean that the parameters ¢,, (for m =1~12) are
i,-(nXe,) and i,-(n X h,) taken at each side of the trian-
gular element. By means of (12), the trial functions can be
expressed in terms of parameters ¢,, instead of explicitly
using the transverse electric and magnetic field compo-
nents. In this way, the trial functions can be forced to
satisfy the necessary boundary conditions in (5) in a simple
manner. ‘

After substituting (10) into (4) and integrating, the fol-
lowing equations for 4 and B are obtained:

A=¢*po
B=¢*q¢. (13)

Here, ¢ denotes a column vector composed of 12 unknown
parameters used in the triangular element; p and ¢ are
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12>12 matrices composed of the values of permittivity,
permeability, and vector shape functions in the element;
and ¢ denotes a transposed column vector.

Imposing the boundary conditions in (5) to (13) and
summing over all elements, ¥4 and YB are obtained.
Then, substituting ¥4 and LB into (4), the variational
expression can be written as

O*'PD
B=ovgo (1)

where ® is a column vector composed of all unknown
parameters used in the waveguide. P is a regular Hermi-
tian matrix?> and Q is a singular real symmetric matrix.
The dimensions of P, O, and ® are exactly equal to six
times the total number of elements in the case of linear
shape functions.

The stationary condition of (4) requires the derivative of
(14) with respect to ® to be equal to zero. From this
condition, we can obtain a generalized eigenvalue problem
as

1

00 = ;PO (15)

or, in detailed matrix form, as

o Slelln 2lel e
g, 0|9 B|P PP

where @, and ®, are subcolumn vectors of ® composed of
the unknown parameters used to express e, and A, respec-
tively, in the waveguide. P,, P,, P,, and P, are the
submatrices of matrix P. Q; and Q, are the submatrices
of matrix Q. For the common case where ¢,,=p,, =0, the
submatrices P, and P, become equal to zero and the
following two equations can be obtained from (16):

1
0,9, = Epzq’z (17)

1
0.0, = EPld)l. (18)
From (17) and (18), we have
(P'Q,P;'0,)0, = (1/8)’®,

(P2_1Q1P1—1Q2)®2 = (1//3)2(1)2-

(19)
(20)
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eigenvalue problems is approximately one half the dimen-
sion of (15). Thus, the eigenvalue problem obtained by
using e, and h, can be reduced to an eigenvalue problem
in which the unknown parameters are expressed only in
terms of e, or h,. It should also be mentioned that for the
case where €,,# 0 or p,, # 0, (15) can be transformed into
the standard eigenvalue problem: P~'Q®d =1/8®.

By solving the eigenvalue problem, the eigenvectors @
and the eigenvalues 8 are obtained. Substituting the eigen-
vectors into (10), we obtain the eigenfunctions of the
transverse electric and magnetic field components. Thus,
by following this method, we can calculate the electromag-
netic field distribution in the waveguide.

IV. NuMEericAlL ExaMPLES AND CONSIDERATIONS

A. Dielectric-Loaded Waveguide

As a first numerical example of the method described in
Sections II and III, we investigate a dielectric-loaded wave-
guide. Fig. 2 shows the cross section of the dielectric-loaded
waveguide of size ¢ X2a bounded by a perfect conductor.
Half of the waveguide is filled with dielectric material
whose relative permittivity and permeability are equal to
2.25 and 1, respectively. The other half of the waveguide is
assumed to be vacuum. The dielectric-loaded waveguide is
a test case for the finite-element method, which is widely
used in many papers, such as [3] and [6].

Now let us consider our result at, for example, k,a =
wy€opoa =3, where the cross section of the dielectric-
loaded waveguide is subdivided into 64 triangular ele-
ments, as shown in Fig. 3. Here, k,, €,, and p, are the
wavenumber, permittivity, and permeability in free space,
respectively.

The total number of eigenvalues obtained with our
method is equal to six times the total number of elements
used in the finite-element mesh. Thus, for the present case,
the total number of eigenvalues is equal to 64X 6= 384.
These eigenvalues can be expressed in the form

ko/B=u+ ju

All 384 eigenvalues can be classified into four types, as

shown in Table 1. From the eigenvalues in Table I, we may

conclude that the eigenvalues of types 1, 2, and 3 are

definitely nonphysical spurious-mode solutions, because

these eigenvalues are not bounded real numbers. All eigen-
values of type 4 are real, as shown in the following;:

(u, v real).

+1.27102 (the corresponding exact solution is +1.27576)
B +0.94546 (the corresponding exact solution is +0.97154)
k, +0.67683 (the corresponding exact solution is +0.72865)
+0.55718 (the corresponding exact solution is +0.59390).

It is clear that one of the above two equations can be
used to solve for 8 and that the dimension of both

2In the case of isotropic and some anisotropic waveguides, P can be
reduced to a real symmetric matrix.

The ecigenvalues of type 4 clearly represent the ap-
proximate values of the exact guided-mode solutions, and
we also observe the one-to-one correspondence between
the values of type 4 and the exact solutions. The positive
and negative values of 8 in type 4 can be regarded as the
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‘t’ Dielectric

a € =225 Vacuum
| a | a |

Fig. 2. The cross section of a dielectric-loaded waveguide.

I N

| a } a {
Fig. 3. Illustration of the finite-clement division of a dielectric-loaded
wavegnide.
TABLE1

CLASSIFICATION OF 384 EIGENVALUES IN THE FINITE-FLEMENT
ANALYSIS OF THE DIELECTRIC-LOADED WAVEGUIDE

IN FIG. 3
Type 1 u =0 v = 0 132 values
Type 2 u ‘= 0 v #£ 0 240 values
Type 3 u = 0 v # 0 . 4 values
Type 4 u # 0 v = 0 8 wvalues

values corresponding to the waves propagating in + z and
— z directions, respectively. Thus, if the condition that
guided-mode solutions be real is imposed, all the
spurious-mode solutions can be completely discriminated.

The finite-element analysis for the dielectric-loaded
waveguide in Fig. 3 has been carried out by using a mesh
with 64 triangular elements. In Fig. 4, the solid lines
represent the finite-element analysis, while dots show the
exact solutions. In case of the fundamental mode, our
finite-element analysis agrees almost exactly with the exact
solutions. The higher order modes, obviously, cannot be
reproduced so well because of an insufficient number of
elements in the finite-element mesh. However the accuracy
in the higher order modes can be improved by increasing
the number of elements or using quadratic shape functions
instead of linear shape functions. Note that the cutoff
frequency of each mode in Fig. 4 is the extrapolated value
from the values near the cutoff frequency.

B. Ferrite-Loaded Waveguide

As a numerical example for the magnetic anisotropic
case, we investigate a ferrite-loaded waveguide, shown in
Fig. 5. The ferrite-loaded waveguide is a version of a
nonreciprocal microwave components in which a ferrite

121

|

— Present method

e Exact solution

0 1 1 1
1.0 18 20 2.5 3.0

ko2

Fig. 4. Dispersion characteristics for a dielectric-loaded waveguide.

T

|

~lakta 32— o

Fig. 5. The cross section of a ferrite-loaded waveguide.

Ferrite Vacuum

Vacuum

slab is placed asymmetrically into the waveguide, and the
static magnetic field is imposed transverse to the direction
of propagation. The ferrite slab in the waveguide can be
characterized by the tensor permeability i and the scalar
permittivity € as '

N 0 Jk

E=| 0 p O

—-Jjk 0 n

@,,0

=
0,0
K=HOZ%——w2

WOM":‘% €ouoa=0.5
e=10¢,.

Here, p, and ¢, are the permeability and permittivity in
free space, respectively. The tensor permeability of the
ferrite is frequency-dependent. Thus, the ferrite-loaded
waveguide can be regarded as a proof for the validity of
the finite-element method for the general case where the
permeability of the medium is a function of frequency. For
the case of the variational expression in (4), the finite-ele-
ment analysis of the ferrite-loaded waveguide can be
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Fig. 6. Tlustration of the finite-clement division of a ferrite-loaded
waveguide.

30

=~= ¢Z Direction
~— ~Z Direction

L r
Z Direction Exact solution

]—P resent method

-

X =Z Direction

10 1.5 2.0 25 3.0
koa

Fig. 7. Dispersion characteristics for a ferrite-loaded waveguide.

accomplished because this variational expression is not a
functional of frequency. .

In Fig. 6, the cross section of the ferrite-loaded wave-
guide is subdivided into 64 triangular elements. The calcu-
lations are carried out by employing the finite-element
mesh shown in Fig. 6. In Fig. 7, the dashed lines and solid
lines represent the finite-element analysis corresponding to
the waves propagating in the +z and —:z directions,
respectively, while the exact solutions are represented by
dots and crosses. Again, our finite-element analysis is in
good agreement with the exact solutions for the fundamen-
tal mode, but as in the numerical example of a dielectric-
loaded waveguide previously discussed, deviations in the
higher order modes still occur. The cause of the deviations
in the higher order modes lies in the insufficient number of
elements and in the circumstance that the shape functions
being used do not yield the correct approximate functions
fitted to the electromagnetic field distribution.

Note also that for the case of a ferrite-loaded waveguide,
all spurious-mode solutions are not real while all guided-

mode solutions are real. Thus, again, all spurious-mode

solutions can be discriminated by imposing the condition
that the guided-mode solutions be real.
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X

Fig. 8. [Illustration of the finite-element division of one quarter of a
hollow circular waveguide.
1.0
— Present method TEn
¢ Exact solution

o
X

X058

oo

15

kea

Fig. 9. Dispersion characteristics for a hollow circular waveguide.

C. Hollow Circular Waveguide

An additional numerical example has been carried out
with a hollow circular waveguide. This example can be
regarded as a test case with curved boundary. The compu-
tation is carried out with the mesh in Fig. 8, where a
quarter of the waveguide is considered. A one-to-one cor-
respondence between the real eigenvalues in our method
and exact solutions has been observed, and no spurious-
mode solutions appear to be real numbers. Fig. 9 shows
the dispersion characteristics for the hollow circular wave-
guide. The solid lines and dots show the finite-element
solutions and the exact solutions, respectively. Thus, the
validity of the present method is also confirmed by this
example.

V. CONCLUSIONS

A variational expression of the propagation constant,
employing transverse electric and magnetic field compo-
nents has been formulated and used in a finite-element
method in order to investigate the propagation characteris-
tics of waveguides. The trial functions of the transverse
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electric and magnetic field components, which are ex-
pressed in terms of the unknown parameters according to
the vector products. i,-(n X e,) and i,-(n X h,), were used
in this finite-element method. A complete discrimination
of the spurious-mode solutions from guided-mode solu-
tions was confirmed by imposing the simple condition that
the guided-mode solutions be real. This simple condition
does not appear to be available in any of the variational
expressions previously proposed. Numerical examples are
given for a dielectric-loaded waveguide, ferrite-loaded
waveguide, and hollow circular waveguide.

REFERENCES

f1] C. Yeh, K. Ha, S. B. Dong, and W. P. Brown, “Single-mode optical
waveguides,” Appl. Opt., vol. 18, pp. 1490-1504, May 1979.

[2] K. Oyamada and T. Okoshi, “Two-dimensional finite-element
method calculation of propagation characteristics of axially nonsym-
metrical optical fibers,” Radio Sci., vol. 17, pp. 109-116, Jan.—Feb.
1982. .

[3] M. Hano, “Finite-element analysis of dielectric-loaded waveguides,”
IEEE Trans. Microwave Theory Tech., vol. MTT-32, pp. 1275-1279,
Oct. 1984. '

[4] A. Konrad, “High-order triangular finite elements for electromag-
netic waves in anisotropic media,” IEEE Trans. Microwave Theory
Tech., vol. MTT-25, pp. 353-360, May 1977.

[5] B. M. A. Rahman and J. B. Davies, “Penalty function improvement
of waveguide solution by finite elements,” IEEE Trans. Microwave
Theory Tech., vol. MTT-32, pp. 922928, Aug. 1984,

[6] M. Koshiba, K. Hayata, and M. Suzuki, “Improved finite-element
formulation in terms of the magnetic field vector for dielectric
waveguides,” TEEE Trans. Microwave Theory Tech., vol, MTT-33,
pp. 227-233, Mar. 1985.

{7] XK. Hayata, M. Koshiba, M. Eguchi, and M. Suzuki, “Novel finite-
element formulation without any spurious solutions for dielectric
waveguides,” Electron. Lett., vol. 22, pp. 295-296, Mar. 1986.

d

Tuptim Angkaew was born in Bangkok, Thai-
land, on November 9, 1961. She. received the
B.Eng. in electrical engineering from King
Mongkut’s Institute of Technology, Ladkrabang
Campus, Bangkok, in 1984. Since 1985, she has
been working toward the M.S. degree at the
Department of Communication Engineering, Fa-
culty of Engineering, Osaka University, Japan..

123

Masanori Matsuhara graduated from Fukui Uni-
versity, Department of Electrical Engineering, in
1963, and in 1968 he completed the doctoral
course in communication engineering at Osaka
University. .

In 1968, he joined the Faculty of Engineering
at Osaka University as an Assistant Professor. In
1972, he was promoted to Associate Professor.
Dr. Matsuhara’s research interests center on
optical waveguides and optical integrated cir-
cuits. His publications include the book Modern
Electromagnetic Theory.

Nobuaki Kumagai (M’59-SM’71-F’81) was born
in Japan on May 19, 1929. He received the B.
Eng. and D. Eng. degrees from Osaka Univer-
sity, Osaka, Japan, in 1953 and 1959, respec-
tively. )

From 1956 to 1960, he was a Research Associ-
ate in the Department of Communication En-
gineering at Osaka University. From 1958
through 1960, he was a Visiting Senior Research
Fellow at the Electronics Research Laboratory of
the University of California, Berkeley, while on
leave of absence from Osaka University. From 1960 to 1970, he was an
Associate Professor of Communication Engineering at Osaka University,
and in 1971 he became a Professor. From 1980 to 1982, he served as

" Dean of Students at Osaka University. In April 1985, he was named

Dean of Engineering of Osaka University, and he has been President of
the university since August 1985. His fields of interest are electromagnetic
theory and its applications to microwave, millimeter-wave, and acoustic-
wave engineering, optical fibers and related techniques, and lasers and
their applications. He has published more than 100 technical papers on
these topics in various journals.

Dr. Kumagai is the author or coauthor of several books, including
Microwave Circuits and Introduction to Relativistic Electromagnetic Field
Theory. From 1979 to 1981, he was Chairman of the technical group on

. Microwave Theory and Techniques of the Institute of Electronics and

Communication Engineers of Japan. He is a member of the Telecom-
munications Technology Council of the Ministry of Post and Telecom-
munications and is a consultant for the Nippon Telegraph and Telephone
Corporation (NTT). Dr. Kumagai is Vice President of the Institute of
Electronics and Communication Engineers of Japan and is a member
of the Institute of Electrical Engineers of Japan and of the Laser Society
of Japan. He has received the Achievement Award from the Institute of
Electronics- and Communication Engineers of Japan and the Special
Award from the Laser Society of Japan. He was also awarded an IEEE
Fellowship for contributions to the study of wave propagation in electro-
magnetics, optics, and acoustics.




