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Finite-Element Analysis of Waveguide
Modes: A Novel Approach That

Eliminates Spurious Modes

TUFTIM ANGKAEW, MASANORI MATSUHARA, AND NOBUAKI KUMAGAI, FELLOW, IEEE

Abstract —An efficient finite-element method for anafyzing the propa-

gation characteristics of a wide variety of waveguides is presented. A
variational expression suited for the finite-element method is formulated in

terms of the transverse electric and magnetic field components. 1ss this

approach afl grrided-mode solutions are real, while the spurious-mode

solutions are not reaL Therefore, discrimination of the qysrious-mode

solutions ems be achieved merely by imposing the simple condition that

guided-mode sohrtions be reaf. Three munericsd examples, two for the

isotropic case and the other for the magnetic anisotropic case, are carried

out.

I. INTRODUCTION

R ECENTLY, a method employing finite-element anal-

ysis to investigate the propagation characteristics of

any arbitrarily shaped waveguide has attracted the atten-

tion of many researchers. The finite-element method is a

powerful means which enables one to analyze a wide

variety of waveguide problems. Several variational formu-

lations for use with the finite-element method have been

proposed [1]–[7]. Most of the variational expressions previ-

ously used are a functional of frequency and can be

classified into the following three types [1]-[6]:

1)

2)

3)

variational expressions which are formulated in terms

of the longitudinal components of the electric field

(e=) and the magnetic field (h=) and can be written

as 0 = functional (P, e=, h=) [11,[21;

variational expressions employing the longitudinal

component (e=) and the transverse component (ef) of

the electric field, which can be written as u =

functional (/3, e=, e,) [3]; and

variational expressions employing all three compo-

nents of the magnetic field, namely hZ and h ~, which

can be written as o = functional (~, Isz, ht) [4]-[6].

Here, u is the angular frequency and ~ is the propagation

constant.

The most serious drawback associated with the finite-

element method is the appearance of spurious-mode solu-

tions. Up to this time, much effort has been devoted to

finding a crite~on to eliminate the spurious-mode solu-

tions. A second drawback occurs in the application of
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variational expressions which are a functional of frequency.

Let us consider, for example, the most common require-

ment in a waveguide problem, namely which mode can

exist for a given value of frequency u and what is the value

for the propagation constant ~? In order to fulfill this

requirement, the calculation of the a –/? diagram must be

performed. Further, if the permeability or permittivity of

the medium is a function of frequency, the calculation

becomes almost impossible.

The approaches proposed by Hano [3] and Koshiba

et al. [6] are typical methods whereby the mixing of

guided-mode solutions with the spurious-mode solutions is

prevented. Hano has used a unique method that employs

the variational expression of type 2, where the longitudinal

and the transverse components of electric field are ex-

pressed as quadratic and linear functions of transverse

coordinates, respectively. As a consequence of this ap-

proach, the values for @ of the spurious-mode solutions do

not lie in the region of lower order guided modes. How-

ever, an overlap between the existence region of the values

for a2 of the spurious-mode solutions and guided-mode

solutions still occurs. Koshiba et al. have modified the

variational expression of type 3 given in, [4].1 Besides the

continuity condition for i=. (n x h ~) and i=” h= at the

boundary between element and element, a supplementary

boundary condition, which requires the continuity of n” h,,
has been introduced. Consequently, the values for a of the

spurious-mode solutions do not lie in the existence region

of slow guided modes. However, an overlap between the

existence region of tiz of the spurious-mode solutions and

guided-mode solutions cannot be avoided. The supplemen-

tary boundary condition also has a constraint which re-

stricts the scope of applications to cases where the perme-

ability of the medium is uniform.

In this paper, a finite-element formulation intended to

overcome the two drawbacks previously mentioned is pro-

posed. A novel variational expression is established in

terms of the transverse electric and magnetic field compo-

nents. In our finite-element program, we assign the param-

eters according to the necessary boundary conditions i=. (n

x e,) and i=. (n x ltt) required in the variational expres-

1Recently, Hayata et al. [7] have demonstrated a method more ad-
vanced than that outliued in [4].
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sion. In our approach, the spurious-mode solutions are not

real while the guided-mode solutions are real. Thus, the

discrimination between spurious-mode solutions and

guided-mode solutions can be achieved merehj by im-

posing the simple condition that the latter be real. In

addition to the advantage that the spurious-mode solutions

can be eliminated, our method can also be applied to the

case where the permeability or permittivity of the medium

is a function of frequency. Therefore, our finite-element

formulation is very useful for the analysis of arbitrarily

shaped waveguides.

The application of our finite-element method to iso-

tropic and anisotropic waveguides is discussed. In particu-

lar, the case where the permeability of the medium is a

function of frequency is considered.

II. VARIATIONAL FORMULATION IN TERMS OF THE

TRANSVERSE ELECTROMAGNETIC FIELD COMPONENTS

Consider the anisotropic waveguide with an arbitrary

cross section in the x – jJ plane. The waveguide is assumed

to be uniform along its longitudinal z-axis. Then the cross

section of the waveguide is subdivided into a finite number

of elements according to the finite-element method. The

permittivity and permeability tensors of the anisotropic

medium are assumed to be Hermite tensors and are de-

fined in matrix form as

where the subscripts tt,tz, zt, and zz refer to 2 X 2, 2 x 1,

1 X 2, and 1 x 1 submatrices, respectively. From Maxwell’s

equations, the equations that govern the electromagnetic

fields in each element are

Qctt “el+ac,=. ez+jVXh=+~i, Xh, = O

aptr. ht+upt=. hz— J’V Xez —Biz Xet =() (1)

where et and h ~ are the transverse components of the

electric and magnetic fields, respectively. The longitudinal

components, e= and h., can be expressed in terms of the

transverse electromagnetic field components as

e, = ~(vxh,-j~czf”e,)

hz=– &( VXe, +jcopzt”h,). (2)

At the boundary of each element, the boundary condi-

tions for the electromagnetic fields in (1) require the

following.

For the boundary between element and element

i,. (n X ec) = continuous function

i=” e, = continuo-m function

I

(3a)
iz. (n x h ~) = continuous function

i,” h, = continuous function.

For the boundary between element and electric wall

iz. (n Xet) =0, iz. e,= O. (3b)

For the boundary between element and magnetic wall

i=”(n Xht) =0, iz. hz=O. (3C)

Here, n is a normal unit vector to the boundary of each

element.

Next, the guided-mode solutions that satisfy (1) and the

boundary conditions in (3) make the following functional

of propagation constant stationary. In other words, we can

prove that this functional is a variational expression

where

1
-—(VXe, +jap=,.fzt)*

W 22

.(v Xet+jop=t”h,)

-&( Vxht-juczt”e,)*
Zz

~(e,, h,) ‘f[i,” (e? Xh, +etxh:)] ds.

Here, Z denotes a summation taken over all elements and

~ ds denotes a surface integral taken in each element.

The trial functions of the transverse electric and mag-

netic field components used in (4) must necessarily satisfy

the following boundary conditions at the boundary of each

element.

For the boundary between element and element

i=. (n X et) = continuous function

}
(5a)

i=. (n X h ~) = continuous function,

For the boundary between element and electric wall

iz. (n Xet) =0. (5b)

For the boundary between element and magnetic wall

iz. (nxht)=O. (5C)

In the following, we shall prove the validity of the

variational expression in (4). First, we assume that the trial

functions of the transverse electric and magnetic field

components used in (4) differ from the true guided-mode

solutions satisfying (1) and (3) by small admissible changes
8e, and ah,, respectively. Let 8/3 denote a variation of the

propagation constant corresponding to $e, and 8h t. Under

the condition that ~ and 8P be real, substituting the trial

functions written in variation notations into (4) results in

the following equations:
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where 3

A–@?=~[e~.(ac ~i.et+ tietz. eZ+ jV Xh=+~iz Xht)

+h:. (@ptt. /Zt+q.Jtz./Jz

1 A 2
–jVXez–/?iz Xet)]ds Fig. 1. An arbitrmy triangular element.

+ j+[hz. (fzoXet)* –ez. (no Xht)*] dl (7a)
field components in each element are expressed by using

and 12 unknown parameters as

8A – @B 6

..l

+aht. (~ptf. ht+apjz. hz– jv xez–/3izx et)*] & where Om (for m=l - 12) denotes unknown parameters

and N~(x, y) (for m = 1- 6) represents linear vector shape
+ j~ [hz. (nox8et)* –eZ. (no X8ht)* functions. The vector shape functions are determined by

–h:. (no X8et)+e~. (no xbht)] dl.
the scalar shape functions and the normal’ unit vectors in

‘7b) the element. These vector shape functions can be expressed

Here ~ dl denotes. a line integral taken along the entire as

boundary line in each element and no denotes an outward
N*i_l = ‘ij

normal unit vector at the boundary of each element. The ~ki )Niz. (nki X n,j
et, hl, e=, h=, vd ~ in (7) satisfy (1), (2), and (3). Thus, by
substituting (l), (2), and (3) into (7) we get ilji =

~(A-~B)=O
i=. (njj X nki r’

(xjY~-xkYj)+(~- Yk)x+(xk-xj)y (Ii)

~(8A-@B) = ~j~ [lzz.(no X~ef)* -ez. (no X i3ht)* Ni =
‘1~2 + ‘2~3 + ‘3.h - ‘2.h – ‘3~2 – ‘ly3

–hf”(no x8et)+e$”(no X bh,)] dl. (8)

Since tlet and 8h, also satisfy the boundary conditions in

(5) according to the trial functions et and h,, the term

Z(8A – /38B) in the above equation becomes zero. Hence,

(6) can be written as

8J3= o. (9)

From (9), we can prove that the functional in (4) is the

variation~ expression accounting for (1) and (3). This

variational expression has the advantage that for a given

value of angular frequency, the values of the propagation

constant can be obtained directly. The variational expres-

sion is also suited for a finite-element formulation in the

sense that all guided-mode solutions are real while the

spurious-mode solutions are not real. This is confirmed in

the numerical examples described in Section IV.

III. FINITE-ELEMENT METHOD

A&ording to the standtid finite-element method, the

cross section of the waveguide is subdivided into a finite

number of triangular elements. Fig. 1 shows an arbitrary

triangular element. The node number and the correspondi-

ng node coordinate at each vertex are assigned as 1,

(% YI), z, (x2, J’2), ~d 3, (x3, YS), respectively. The nor-
mal unit vector at each side is assigned as nlz, n 23,and n 31
normal to, respectively, the sides (l–2), (2–3), and (3–1).

The trial functions of the transverse electric and magnetic

where (i, j, k) permutes in a natural order. The equations

for the unknown parameters ~. (for m =1 - 12) can be

recognized from (10) and (11) as follows

@zi-~=iz”(?l~jXetj)

@2i=i=.(nzJXeti)

~2i+5=iz”(nki xfiti)

@2i+6=iz.(nij Xh,i) (12)

where eti and h 1, (for i = 1- 3) denote the transverse

electric and magnetic field components at node i. Equa-

tions (12) mean that the parameters +~ (for m =1 - 12) are

i=- (n X et) and i=- (n X lzt) taken at each side of the trian-

gular element. By means of (12), the trial functions can be

expressed in terms of pariirneters +~ instead of explicitly

using the transverse electric and magnetic field compo-

nents. In this way, the trial functions can be forced to

satisfy the necessary boundary conditions in (5) in a simple

manner.

After substituting (10) into (4) and integrating, the fol-

lowing equations for A and B are obtained:

A = &’p+

B=&~~.. (13)

Here, @denotes a column vector composed of 12 unknown

parameters used in the triangular element; p and q are
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12x 12 matrices composed of the values of permittivity,

permeability, and vector shape functions in the element;

and t denotes a transposed column vector.

Imposing the boundary conditions in (5) to (13) and

summing over all elements, 2A and D are obttined.

Then, substituting XA and ZB into (4), the variational

expression can be written as

@*tp@
p=—

@*’Q@
(14)

where @ is a column vector composed of all unknown

parameters used in the waveguide. P is a regular Hermi-

tian rnatrix2 and Q is a singular real symmetric matrix.

The dimensions of P, Q, and @ are exactly equal to six

times the t~tal number of elements in the case of linear

shape functions.

The stationary condition of (4) requires the derivative of

(14) with respect to @ to be equal to zero. From this

condition, we can obtain a generalized eigenvalue problem

as

Q@= ;P@ (15)

or, in detailed matrix form, as

where @l and Oz are subcolumn vectors of @ composed of

the unknown parameters used to express e; and h t, respec-

tively, in the waveguide. Pl, P2, P~, and PA are the

submatrices of matrix P. QI and Q2 are the submatrices

of matrix Q. For the common case where ~zt = pzt = O, the

submatrices Pg and Pq become equal to zero and the

following two equations can be obtained from (16):

Ql@l = :P2@2 (17)

Q2@2= ;P#l. (18)

From (17) and (18), we have

(P; ’Q2P;’Q1)Ol = (1/~)2@l (19)

(P; ’Q,P;’QJQ2 = (VBJ202. (20)

eigenvalue problems is approximately one half the dimen-

sion of (15). Thus, the eigenvalue problem obtained by

using et and h t can be reduced to an eigenvalue problem

in which the unknown parameters are expressed only in

terms of e, or h,. It should also be mentioned that for the

case where Czr# O or pzt # O, (15) can be transformed into

the st~dard eigenvalue problem: P- lQ@ = l/f3@.

By solving the eigenvalue problem, the eigenvectors @

and the eigenv@ues @ are obtained. Substitutkg the eigen-

vectors into (10), we obtain the eigenfunctions of the

transverse electric and magnetic field components. Thus,

by following this method, we can calculate the electromag-

netic field distribution in the waveguide.

IV. Nmimucm EXANWLESAND CONSIDERATIONS

A. Dielectric-Loaded Waveguide

As a first numerical example of the method described in

Sections II and III, we investigate a dielectric-loaded wave-

guide. Fig. 2 shows the cross section of the dielectric-loaded

waveguide of size a X 2a bounded by a perfect conductor.

Half of the waveguide is filled with dielectric material

whose relative permittivity and permeability are equal to

2.25 and 1, respectively. The other half of the waveguide is

assumed to be vacuum. The dielectric-loaded waveguide is

a test case for the finite-element method, which is widely

used in many papers, such as [3] and [6].

Now let us consider our result at, for example, kOa =

u=a = 3, where the cross section of the dielectric-

loaded waveguide is subdivided into 64 triangular ele-

ments, as shown in Fig. 3. Here, kO, c~, and v ~ are the

wavenumber, permittivity, and permeability in free space,

respectively.

The total number of eigenvalues obtained with our

method is equal to six times the total number of elements

used in the finite-element mesh. Thus, for the present case,

the total number of eigenvalues is equal to 64X6= 384.

These eigenvalues can be expressed in the form

kO/f?= u+ ju (u, v real).

All 384 eigenvdues can be classified into four types, as

shown in Table I. From the eigenvalues in Table 1, we may

conclude that the eigenvalues of types 1, 2, and 3 are

definitely nonphysical spurious-mode solutions, because

these eigenvalues are not bounded real numbers. All eigen-

values of type 4 are real, as shown in the following:

I
+1.27102 (the corresponding exact solution is ~ 1.27576)

B_ = +0.94546 (the corresponding exact solution is +0.97154)

k. +0.67683 (the corresponding exact solution is +0.72865)

+0.55718 (the corresponding exact solution is +0.59390).

It is clear that one of the above two equations can be The eigenvalues of type 4 clearly represent the ap-

used to solve for jl and that the dimension of both proximate values of the exact guided-mode solutions, and

we also observe the one-to-one correspondence between

2In the case of isotropic and some anisotropic waveguides, P can be the values of type 4 and the exact solutions. The positive

reduced to a rest symmetric matrix. and negative values of P in type 4 can be regarded as the
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+a—1—a+

Fig. 2. The cross section of a dielectric-loaded waveguide,

T
a

1 x

l— a~a+

Fig. 3. Illustration of the finite-element division of a dielectric-loaded
waveguide.

TABLE I
CLASSIFICATIONOF 384 EIGENVALUESIN THE FINITS+ELEMSNT

ANALYSIS OFTHSDIELECTIUC-LOADEDWAVEGUIDE
IN FIG. 3

I Type1 I ‘=0 I ‘=” I 132 value,

I
1 1 1

Type 2 “=0 “+0 240 values

TyPe 3 “ErJ v+” 4 values

Type 4 “+0 v =0 8 values

values corresponding to the waves propagating in + z and

— z directions, respectively. Thus, if the condition that

guided-mode solutions be real is imposed, all the

spurious-mode solutions can be completely discriminated.

The finite-element analysis for the dielectric-loaded

waveguide in Fig. 3 has been carried out by using a mesh

with 64 triangular elements. In Fig. 4, the solid lines

represent the finite-element analysis, while dots show the

exact solutions. In case of the fundamental mode, our

finite-element analysis agrees almost exactly with the exact

solutions. The higher order modes, obviously, cannot be

reproduced so well because of an insufficient number of

elements in the finite-element mesh. However the accuracy

in the higher order modes can be improved by increasing

the number of elements or using quadratic shape functions

instead of linear shape functions. Note that the cutoff

frequency of each mode in Fig. 4 is the extrapolated value

from the values near the cutoff frequency.

B. Ferrite-Loaded Waueguide

As a numerical example for the magnetic anisotropic

case, we investigate a ferrite-loaded wavegnide, shown in

Fig. 5. The ferrite-loaded waveguide is a version of a

nonreciprocal microwave components in which a ferrite

1

0

<

Q

o

— Present method
I

1.0 15 20 2,5 3.0

k. a

Fig. 4. Dispersion characteristics for a dielectric-loaded wavegnide.

TE

a ; Ferrite Vacuum
“

1. .

:

r
-+~ab~a ~~ ~a _-

Fig. 5. The cross section of a ferrite-loaded waveguide.

slab is placed asymmetrically into the waveguide, and the

static magnetic field is imposed transverse to the direction

of propagation. The ferrite slab in the waveguide can be

characterized by the tensor permeability ~ and the scalar

permittivity c as ‘

[1

O j~

p= ; p~ o

–ju o p

‘=’++a

Here, p. and c, are the permeability and permittivity in

free space, respectively. The tensor permeability of the

ferrite is frequency-dependent. Thus, the ferrite-loaded

waveguide can be regarded as a proof for the validity of

the finite-element method for the general case where the

permeability of the medium is a function of frequency. For

the case of the variational expression in (4), the finite-ele-

ment analysis of the ferrite-loaded waveguide can be
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Y,

,,

x

Fig. 6. Illustration of the finite-element division of a ferrite-loaded
waveguide.

30, (
‘-- ● Z Dlrectlon
_ -z ~,rect,on~Prese”t method

● ●Z Djrect10n7 c. ... “-,, ,,, -. -

10 1.5 2.0 25 3,0

ke a

Fig. 7. Dispersion characteristics for a ferrite-loaded waveguide.

accomplished because thk variational expression is not a

functiomil of frequency.

In Fig. 6, the cross section, of the ferrite-loaded wave-

guide is subdivided into 64 triangular elements. The calcu-

lations are carried out by employing, the finite-element

mesh shown in Fig. 6. In Fig. 7,’ the dashed lines and solid

lines represent the finite-element analysis corresponding to

the waves propagating in the + z and – z directions,

respectively, while the exact solutions are represented by

dots and crosses. Again, our finite-element analysis is in

good agreement with the exact solutions for the fundamen-

tal mode, but as in the numerical example of a dielectric-

loaded waveguide previously discussed, deviations in the

higher order modes still occur. The cause of the deviations

in the higher order modes lies in the insufficient number of

elements and in the circumstance that the shape functions

being used do not yield the correct approximate functions

fitted to the electromagnetic field distribution.

Note also that for the case of a ferrite-loaded waveguide,

ill spurious-mode solutions are not real while all guided-

mode ,solutions are real. Thus, again, all spurious-mode

solutions can be discriminated by imposing the condition

that the guided-mode solutions be real.

I

Y

of aFig. 8.

~a~- ‘“
Illustration of the finite-element division of one quarter

hollow circular waveguide.

1“0~

1.5 2.0 2.5 30 3.5 &o

kea

Fig. 9. Dispersion characteristics for a hollow circular waveguide.

C. Hollow Circular Waveguide

An additional numerical example has been carried out

with a hollow circular waveguide. This example can be

regarded as a test case with curved boundary. The compu-

tation is carried out with the mesh in Fig. 8, where a

quarter of the waveguide is considered. A one-to-one cor-

respondence between the real eigenvalues in our method

and exact solutions has been observed, and no spurious-

mode solutions appear to be real numbers. Fig. 9 shows

the dispersion characteristics for the hollow circular wave-

guide. The solid lines and dots show the finite-element

solutions and the exact solutions, respectively: Thus, the

validity of the present method is also confirmed by this

example.

V. CONCLUSIONS

A variational expression of the propagation constant,

employing transverse electric and magnetic field compo-

nents has been forrmdated and used in a finite-element

method in order to investigate the propagation characteris-

tics of waveguides. The trial functions of the transverse
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electric and magnetic field components, which are ex-

pressed in terms of the unknown parameters according to

the vector products. i,” (n x et) and i=. (n x lzt), were used

in this finite-element method. A complete discrimination

of the spurious-mode solutions from guided-mode solu-

tions was confirmed by imposing the simple condition that

the guided-mode solutions be real. This simple condition

does not appear to be available in any of the variational

expressions previously proposed. Numerical examples are

given for a dielectric-loaded waveguide, ferrite-loaded

waveguide, and hollow circular waveguide.
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